
 1 

Bioinformatics cheat sheet 
By Allison E. Mann, Krithi Sankaranarayanan, Christina Warinner, Andrew 
Ozga (Updated 9/2/20) 

 
Before getting started! 

• These commands may not work exactly as written with your operating 
system (OS) but with some tweaking/googling you should be able to 
figure out how to use them on your system (see more resources below). 

• Remember! Using the full file path is nearly always important! 

• If you don’t know how to use a command or you want more options try 
man command, command -h, or command --help  

• If you run into a problem, Google is your best friend! Nine times out of ten 
someone somewhere has had the same problem, posted it to a forum, 
and had it solved by the community. Helpful online forums include 
SEQanswers, StackOverflow, and ResearchGate, among many others! 

 
Table of contents 
 
Your computer 
Your OS and why it matters………………………………………… 
Getting started with Linux…………………………………………… 
Getting started with Mac OS X……………………………………... 
Getting started with Windows………………………………………. 
System requirements………………………………………………… 
Understanding your system’s memory…………………………….. 
 
Unix/Linux Bash Basics 
Basic terms: The Shell………………………………………………. 
Structure of commands and pipelines……………………………… 
Input & output redirection……………………………………………. 
Standard output and standard error………………………………… 
Basic terms: Scripting………………………………………………… 
Help, history, and panic buttons…………………………………….. 
Unprintable characters……………………………………………….. 
Directory and file paths……………………………………………….. 
Command search path……………………………………………….. 
Basic terms: Navigation………………………………………………. 

File system navigation………………………………………………… 
Check directory contents……………………………………………… 
Searching for files, directories, programs………………………….. 
Wildcards………………………………………………………………. 
Creating, moving, renaming, and removing files and folders…….. 
Modifying file permissions……………………………………………. 
Viewing files in the command line……………………………………. 
Unpacking and compressing files……………………………………. 
Important keyboard shortcuts…………………………………………. 
Metacharacters & expansions………………………………………… 
Regular expressions……………………………………………………. 
Other commands for text processing…………………………………. 
Loops…………………………………………………………………….. 
Advanced: customizing your shell……………………………………. 
 
Working on servers 
Connecting to remote hosts (SHH/SCP)……………………………. 
Job queue systems……………………………………………………. 
Parallelization…………………………………………………………… 
File permissions………………………………………………………… 
Advanced: other useful commands…………………………………. 
 
Version control and scientific reproducibility 
Git and GitHub………………………………………………………….. 
Conda environments…………………………………………………... 
Jupyter notebooks……………………………………………………… 
 
Genomics Basics 
Structure of common files formats in genomics……………………… 
FASTA……………………………………………………………………. 
FASTQ……………………………………………………………………. 
SAM and BAM…………………………………………………………… 
GenBank…………………………………………………………………. 
BLAST……………………………………………………………………. 
GFF………………………………………………………………………. 
VCF………………………………………………………………………. 
 
A Brief Introduction to Programming 
Free online programming courses……………………………………... 
Python…………………………………………………………………….. 



 2 

R…………………………………………………………………………… 
Other programming languages used in biology………………………. 
Reference Databases 
 
Silly things 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Your computer 

 

Your OS and why it matters 
 
Your operating system (OS) is essential system software that manages all of your 
computer’s hardware and software (the base of which is known as the kernel). If 
you have a Mac computer your OS is Mac OS, Windows runs Windows OS, and 
Linux distributions all run different flavors of the Linux OS. While both Linux and 
Mac OS are part of the wider UNIX family of operating systems, Windows is based 
on MS-DOS (Microsoft Disk Operating System). It’s helpful to thing about operating 
systems as a genealogy with two major branches – DOS and UNIX (See figure 
below, from http://ed-informatics.org/healthcare-it/).  

 
Because of their shared family history, Linux and Mac OS have very similar 
command line tools and most anything you can do in a Linux system you can also 
do on a Mac and vice versa. Windows, on the other hand, is fundamentally 
different. The flexibility and accessibility of UNIX-based systems make them the 
preferred OS for computational biology. As many bioinformatics programs are 
written with UNIX systems in mind, Windows users should download a Linux 
version to run in a virtual environment (instructions below). Even if you have a 



 3 

Mac, it is important to be familiar with Linux. This is especially true if you are 
interested in cluster computing as nearly all cluster computers run Linux 
environments.  
 

Getting started with Linux 
 
Congratulations! You’re already set up to run nearly everything in this cheat sheet! 
 

Getting started with Mac OS X 
 
Mac OS X has a UNIX operating system that operates similarly to Linux. With a 
few slight tweaks, you should be able to run everything in this cheat sheet with little 
problem. Your command line programming is in the terminal. To open the terminal, 
click the Mac search icon (magnifying glass) at the upper right corner of the screen 
and type in Terminal. Select the Terminal program with the icon that looks like a 
black box 
 

Getting started with a Windows PC 
 
You have a Microsoft Windows operating system that runs a MS-DOS like 
command line. Although Windows is good for running many commercial Graphical 
User Interface (GUI) programs, it is not good for running programs in the command 
line. To run the command line scripts and programs described in this manual, you 
must first download and install a Virtual Box for Linux: 
https://www.virtualbox.org/wiki/Linux_Downloads. The most commonly used Linux 
distribution is Ubuntu but don’t be afraid to try other choices and find one that 
works for you!  
 

System requirements 
 
Be aware that successfully running jobs on your own computer depends greatly on 
the size of the job and your computer’s specifications (specs). Because of this the 
table below might not apply to your particular goals. In general, however, the 
following features are the minimum desired specs for processing next generation 
sequencing data on your personal computer. Other jobs will need to be sent to a 
cluster to complete. It’s a good idea to have an external hard drive to serve as 
backup. As a general rule I always have important data files and scripts saved in 

triplicate -- whether that is on external/internal hard drives or on online repositories 
(e.g., GitHub). 
 

Processor/CPU 4 to 8 cores 

Hard drive/Solid state drive At least 1 TB of memory 

RAM At least 16 GB 

 

Understanding your system’s memory & parallel processing 
 
CPU Stands for Central Processing Unit. Consists of registers that 

contain the instructions that are sent to your hardware (e.g., 
fetch, store, operate data) 

Cache Small but very fast bit of system memory that holds data while 
in transition between your RAM and CPU (also sometimes 
called static RAM or SRAM) 

RAM Stands for Random Access Memory. Fast because it can be 
accessed directly in random order and no mechanical devices 
are required to read it. 

Hard Disk This is what most people think about when talking about a 
computer’s memory (but as you can see is only one type of 
system memory). The hard disk provides permanent storage, 
is much slower, but larger than other memory types. 

Virtual memory Acts like RAM but resides on the disk (occasionally important 
to set for jobs submitted to cluster computers) 

 
You’ve probably noticed that if you submit a large job or try to open a large data file 
on your personal computer you run into problems (or you might even crash your 
computer!). If not a flaw in the program or file itself, this is very likely due to a 
fundamental architectural component of modern computers known as “memory 
hierarchy.” Essentially, your computer has multiple forms of memory that differ in 
terms of access speed and size which your computer uses to access and store 

https://www.virtualbox.org/wiki/Linux_Downloads


 4 

data. To perform a task, information needs to be transmitted to your CPU along 
this memory hierarchy. 

 
 
 

 
 
Most CPUs can only perform a couple tasks at a time (depending on how many 
cores the CPU has) so fi the data it needs to continue working is stuck somewhere 
in the memory hierarchy where it cannot access it the task will exit with an error. 
Think of it as a sort of information bottleneck. Because of this, most 
computationally expensive tasks require the program to be parallelized (that is, the 
job is split into smaller problems and solved simultaneously on several processors 
or threads). Luckily, many programs are set up to have parallel options and CPUs 
usually have more than one core or threads, which allow local parallelization. Look 
for error messages that mention things like “cache dump” or “out of memory” – 
these point to problems with your memory bottleneck. Even when certain programs 
can be run in parallel, some jobs require a lot more memory than what your basic 
computer has so using a cluster computer will be necessary. The key thing to keep 
in mind here is that increasing the memory allocated to a task doesn’t necessarily 
“speed up” the process; it provides more space for the process to continue! See 
the section on parallelization for more information. 

 

Unix/Linux bash basics 

 
Basic terms: The shell 
 
Shell Program that takes keyboard commands and passes them to 

the operating system to carry out. While there are different 
flavors of the shell, most commands are run on the bash shell 
(Bourne Again Shell) is the standard shell available on Linux 
and Mac OS. 

Terminal Window created by a GUI through which you can access the 
shell. The terminal contains your command line and is 
accessed differently for Linux, Mac OS, and Windows 
machines. Terminal/command line/shell are often used 
interchangeably even though they do refer to different things.  

Command line Line where you type your commands. The line itself begins 
with a shell prompt, which is usually your computer username 
followed by $ or >.  

Directory Folder that contains files. Directories have a hierarchical 
structures. All directories have a pathname that show how the 
directory is connected to your home directory. For example: 
/home/mann/my_folder/ 

Executable file A file that can be invoked as a command. Can contain shell 
scripts or programming code commands 

Command An executable program. Can be a compiled binary (C++), a 
scripting language program (e.g., Perl or Python), or a shell 
function. 

Argument Arguments are a type of parameter that provides information 
to a command (often other file names) 

 

Structure of commands and pipelines 
 
Structure of a shell command 
command option(s) argument(s) 

 

Example: 
You have a fasta file called contigs.fa and you want to know the format of the 
sequence labels. You can search the file for the pattern “^>” (a regular expression) 
using the command “grep” and print to your standard output (in this case, your 



 5 

terminal window). This will print the lines containing your sequence labels but not 
the sequences themselves. 
 

grep “^>” contigs.fa 

 

Results: 
>ASV595 

>ASV596 

>ASV597 

>ASV598 

>ASV599 

>ASV600 

 

Structure of a shell pipeline 
command option argument | command option argument 

 

Example: 
From the same fasta file, you want to know how many sequences there are in the 
file. Since every sequence name begins with > you can just count these and that 
will tell you how many sequences you have. Use the script above to isolate only 
the lines containing > at the beginning of the line (^) and then use a pipe (|) the 
result of the first command to a secondary command called wc (word count) to 
count the number of lines (-l).  
 
grep “^>” contigs.fa | wc -l 

 
Result: 
6 

 

Input and output redirection 
 
| Pipe command result into standard input of next command 
; Give serial commands on a line (without redirect) 
< Input redirect 
> Output redirect 
>> Appends output to file rather than overwriting it 
cat Read input file(s) and copies them to standard output 

 

The default standard output for most commands is to print to screen, but often this 
is not the desired result. For example, in the previous example, imagine printing all 
fasta sequence labels for a 5 GB fasta file! If you do this by mistake, press 
CTRL+C to kill the command. Instead, you may want to pipe the output into the 
input of the next command using a pipe (|) as shown in the previous example with 
wc. 
 
Alternatively, you may want to save the result to a new text file. To do this use the 
greater than symbol (>): 
 

grep “^>” contigs.fa > contigs.list 

 
You may also want to redirect the contents of a file to a command that normally 
takes keyboard strokes as its input. To do this, use the less than symbol (<): 
 
command < file 
 
Note that some commands have options for selecting non-standard input and 
output files as arguments. For these commands the input option is usually (but not 
always – check the manual!) –i and the output option is usually -o: 
 
fastq_to_fasta –i contigs.fq -o output.fa  

 
However, for the –i and -o options to work, they must be valid options for that 
command. If you’re unsure what the command’s options are, check the command’s 
man or help file: 
 
command -h OR --help OR man command 

 
The cat (concatenate) command is flexible and can be used to append files, similar 
to >>. If there were two files containing sample1 contigs, contigs1.fa and sample 2 
contigs, contigs2.fa, and you wanted to combine them into one file, use cat: 
 
cat contigs1.fa contigs2.fa > all_contigs.fa 

 

Standard output and standard error 
 
Every time you run a command, bash generates command output information and 
command error information. By default, the output prints to screen and error 



 6 

messages only appear if there are errors. However, the error data also contains 
additional useful file information that you may want to know, even if there are no 
errors. 
 
Programs produce output in several streams with numbered file descriptors. The 
first three streams with file descriptors are: the standard input (0), the output (1), 
and the errors (2) 
 
By default, bash interprets the input redirect < as taking the file descriptor 0. By 
default, bash interprets the output redirect > as taking the file descriptor 1. As as 
result, the following two commands are equivalent. 
 
grep “^>” contigs.fa > contigs.list 

 

grep “^>” contigs.fa 1> contigs.list 

 
However, if you want to save the error stream instead of the output stream, you 
just need to modify the command as follows: 
 
grep “^>” contigs.fa 2> contigs.err 

 
Alternatively, if you want to save both streams, you can specify this as well: 
 
grep “^>” contigs.fa 1> contigs.list 2> contigs.err 

 
If for some reason you don’t want the output or error data streams, you can 
redirect one or both of them to the bit bucket known as /dev/null. The bit bucket 
accepts data and does nothing with it. The bit bucket can be useful if a particular 
command generates a lot of error messages that you want to ignore: 
 
grep “^>” contigs.fa 1> contigs.list 2> /dev/null 

 

Basic terms: Scripting 
 
Script A file that contains shell commands. Scripts can be written using 

basic UNIX/Linux commands or can be written in another scripting 
language like Perl or Python 

Job A script that is currently running. Normally jobs run in the command 
line and this freezes your terminal until the job completes. Jobs can 

be made to run in the background by adding an ampersand (&) 
after the command or pressing CTL+Z and then bg 

Alias A short name that redirects to a user-created command, pipeline, 
or script 

Function A mini-script located within another script 

Parameter Information that modifies the execution of the command. Options 
and arguments are parameters 

Variable An object that can be assigned a string value. Variables in bash are 
preceded with a $ 

 
Aliases can be very useful when you need to perform a complex command over 
and over again. For example, say you have to count the number of sequences in 
each fasta file within your working directory. If there are a lot of files, this could be 
very tedious and take a long time to do. You can simplify this process by writing a 
short script to automate the process and run the jobs for you. To make it even 
easier still, you can give your script an alias so that it requires even less typing. 
 
For example, the following script uses the command grep in combination with the 
option -c, a type of parameter, and a command substitution function $(command) 
to automate sequence counting within fasta files located within the working 
directory: 
 
grep –c “^>” $(ls) 

 
To run this same job in the background 
 
grep –c “^>” $(ls) & 

 
You can alias this script so you don’t have to retype it each time you want to use it: 
 
alias fastac=’grep –c “^>” $(ls)’ 

 
If you then navigate to a directory containing the files contigs1.fa and contigs2.fa 
and type fastac the result is: 
 
contigs1: 186342348 

contigs2: 87155451 

 

Help, history, and panic buttons 



 7 

 
q Escapes man files, help files, and text viewing 
CTRL+C Stops current command in the terminal 
CTRL+D Ends keyboard input (for multi-line command entry, for 

example using cat); helpful if command hangs 
CTRL+L Clears screen and places current line at the top of the 

terminal (useful for if the terminal gets cluttered) 

Up arrow Recalls the previous command 
history Prints numbered list of the last 500 commands 
!88 Prints the 88th command (can replace with any number) 
exit Log out of the terminal shell 

man command View command manual 

help command View help file for command (shell built in commands only) 
command -h View help file for command 
command --help  View help file for command 

 
Sometimes things don’t go as planned. If your screen starts scrolling and printing 
millions of lines of text, don’t panic. Press CTRL and C simultaneously and the 
command will stop.  
 
If you are reading a help file and can’t seem to get out of the help file window, don’t 
panic. Press q and you will quit the help file. 
 
If you type a command and press enter and nothing happens, you may have 
forgotten to complete the command (this happens a lot with the cat command). Try 
pressing CTRL and D simultaneously to tell bash that you’re finished. 
 
If you make a mistake and print a million lines of text and now your terminal is 
hopelessly cluttered, press CTRL and L simultaneously to clean it up. If it is 
installed you can also type clear and you will have a cleaned up terminal. 
 
If you want a record of the commands you entered into the shell, type history and a 
numbered list of your past 500 commands will appear on the screen.  
 

Unprintable characters 
 
Shell programming has a long history, and as a result it carries around 
programming baggage from when computers (and teletype machines) were very 

different. It is important to discuss some of these arcane holdovers from the 1960s-
1980s so you can understand and troubleshoot frustrating bash quirks. 
 
Many of the characters in use when the shell was developed are no longer in 
common use. Bash uses the ASCII (pronounced “as-key”; American Standard 
Code for Information Exchange) character system, which contains 128 characters, 
of which the first 33 are unprintable and 95 are printable (although one is a blank 
space). Unprintable characters can be typed by entering the appropriate control 
code (CTRL + code). By convention, the CTRL key is signified by a caret (^) in 
text: 
 
Unprintable: null (^@), start of header (^a), start of text (^b) end of text (^c), end of 
transmission (^d), enquiry (^e), acknowledgement (^f), bell (^g), backspace (^h), 
horizontal tab (^i), line feed (^j), vertical tab (^k), form feed (^l), carriage return 
(^m), shift out (^n), shift in (^o), data link escape (^p), device control 1 (^q), device 
control 2 (^r), device control 3 (^s), device control 4 (^t), negative 
acknowledgement (^u), synchronous idle (^v), end of transmission block (^w), 
cancel (^x), end of medium (^y), substitute (^z), escape (^[), file separator (^\), 
group separator (^]), record separator (^^), unit separator (^_), delete (^?).  

 
Printable: !"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ 
[\]^_`abcdefghijklmnopqrstuvwxyz{|}~  
 
The 33 unprintable characters are control codes that were used by teletype 
machines to transmit commands. The ambiguity of control codes in today’s world 
causes incompatibility problems when transferring plain text files across platforms 
and operating systems. The most notorious examples are the linefeed and carriage 
return control codes. Typewriters and teletype machines required two commands 
to advance to a new line: 1) a command to advance the paper (linefeed) and 2) a 
command to return the carriage to the beginning of the line (carriage return). With 
the advent of computers, this two-step process was unnecessary. To mark a 
newline, Unix used only the linefeed, Mac used only the carriage return, and 
Windows/DOS used both. Because the characters are unprintable, plain text 
generated on each operating system looks the same, but these “hidden” 
characters cause trouble if you try to copy text from a Mac or Windows machine 
into the bash shell. With OS X, Mac switched over to linefeed, but nevertheless 
problems still arise. 
 



 8 

If you use a text editor to write scripts, you must be sure to use one that is 
compatible with bash. On Macs, the plain text editor TextEdit is NOT compatible 
with bash. Download and use TextWranger or SublimeText instead. For PCs, the 
plain text editor Notepad is NOT compatible with bash. NEVER use Word to 
generate scripts. Within the UNIX/Linux environment, nano, vim, emacs, and gedit 
are all good text editors made for bash scripting. If you are unsure if your script has 
hidden characters, test it with cat –a. 
 
cat -a broken script 

broken script^m$  

 
The ^m is a hidden carriage return in the script 
 

Directory and file paths 
 
The locations of all directories and files in your computer are known to bash via 
their path. The path records how the directory or file in question is connected to the 
root directory. 
 
For example, I have a fasta file on my computer that contains 16S rRNA 
sequences generated from kissing bug gut samples called rep_set.fa 
 
The full file path for this file is: /Users/mann/github/triatomes 
 

Note that the root directory is not written in this path. Instead, it is presumed by the 
first /. The first subdirectory is Users, the next is mann, etc. Each subdirectory is 
separated from the others by a forward slash /.  
 
If I want to access or analyze this file using bash commands, I need to tell bash 
where the file is. I can do this one of two ways: 1) I can navigate to the directory 
containing the file and then run the commands through this directory, or 2) I can 
provide the full file path to the file and run the command from another directory. 
 
When interacting with bash, you are always in a directory. When you first call a 
terminal you always begin in your home directory. When you navigate to another 
directory, that directory becomes your working directory.  
 
If you want to know what your working directory is, type pwd (print working 
directory). If you want to return to your home directory, type cd. To check that you 

have moved to the correct directory, type pwd to see the file path, or type ls to list 
all of the files and subdirectories in your new working directory. 
 
Note: 
When naming files and directories NEVER use spaces. Bash will interpret the 
space as indicating two separate names and may cause the program to not work 
properly. So if you have a directory named My Folder you should change it to 
something like My_Folder or MyFolder. 
 

Command search path 
 
Every command is actually a file containing executable code. How does bash find 
these files? When you type a command, bash searches its executable PATH for 
the command. The PATH is a list of directories, some of which are set by default to 
the PATH. Most programs you download and install will store their executables in 
your /bin directory. If not, you will need to move the files there or create a symbolic 
link so that bash can find it. 
 
To create a symbolic link to executable downloaded to a location other than 
/usr/local/bin, navigate to the location of the executable and type: 
 
sudo cp -L program /usr/local/bin 

 
This uses the copy command (cp) in combination with sudo (super user; gives you 
administrative access to folders otherwise locked by your OS) with -L option 
(creates link) to link your executable program files to the directory /usr/local/bin. 
Alternatively, you can add additional directories to the PATH with the following 
command: 
 
PATH=$PATH:/Users/mann/my_program_directory 

 
Where /Users/mann/my_program_directory is any valid directory path to where 
your command is located. To check what directories are already in your path type: 
 
echo $PATH 

 
You should see a list of all the directories that are currently set for execution by 
bash. For example, my current setup is: 
 



 9 

echo $PATH 

/usr/local/opt/icu4c/sbin:/usr/local/opt/icu4c/bin:/Users/man

n/.rvm/gems/ruby-2.4.4/bin:/Users/mann/.rvm/gems/ruby-

2.4.4@global/bin:/Users/mann/.rvm/rubies/ruby-

2.4.4/bin:/Users/mann/miniconda3/bin:/Users/mann/miniconda3/c

ondabin:/opt/local/bin:/opt/local/sbin:/Users/mann/miniconda3

/envs/qiime1/bin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

:/Library/TeX/texbin:/opt/X11/bin:/Users/mann/.rvm/bin 

 
Bash searches the PATH directories in order until it finds the executable you called 
from the terminal, and then it runs it. NEVER put “.” in your PATH as this makes 
your computer vulnerable to hackers through a process called privilege escalation. 
 
If you want to use a command that you used earlier in this session but now you 
can’t remember what it was, use the hash command: 
 
hash 

 
Results: 
hits command 

   5 /usr/bin/grep 

   6 /bin/ls 

 
It will return a two-column table of each command you’ve used and how many 
times you’ve used it. Alternatively use the history command to review the past 500 
commands you’ve entered.  
 

Basic terms: Navigation 
 
Path Navigation information that is used to locate a file or 

directory 

Root directory Base directory of your computer. All other directories are 
subdirectories of this directory 

Home directory The directory for your username on a computer. You 
control permissions for folders and files within your home 
directory but may have limited permissions for folders and 
files outside of your home. 

Working directory The folder you are currently “in” 

 

File system navigation 
 
cd /path/to/directory Change directory to the one provided in the path 
cd .. Go up one directory in the path 
cd  Go to your home directory 
pwd  Print your current directory 
cd ~ Go to home directory 

 
As described in previous sections, you can use cd (change directory) to navigate 
your directories, and pwd (print working directory) to view the file path of your 
current working directory 
 

Check directory contents 
 
ls  List all files/folders in your current directory 
ls -a List all files including hidden files (preceded with a .) 
ls -l  List all files and associated metadata 
ls -R  List all files recursively (in subdirectories as well) 
ls -lhrt  List all files sorted by time modified, including permissions, file 

type, and size (this is my go-to) 
man ls Open the manual for the ls command. There are many different 

options 

 
As described in previous sections, you can use ls (list) to list the contents of a 
directory. You can use options to view additional metadata about the contents of a 
directory such as when the file was created, how big they are, etc. 
 

Searching for files, directories, and programs 
 
find foo Search for file named “foo” in directory hierarchy 
find –name foo Search for file “foo” in any directory 
locate foo Locate all instances of file name “foo” 
grep -R foo Search all files in directory hierarchy for file containing 

“foo” 
which program_name Shows where executable program is located (i.e., it’s 

path) 

 



 10 

Sometimes you need to find a file/directory/program but you don’t know where it is. 
Use the find, locate, grep, and which commands to locate what you need. 
 

Wildcards 
 
Wildcards apply to filenames and can be used with any command that accepts 
filenames as arguments. 
 
* Any character(s) 
? Any single character 
[abcd] Any character in abcd 
[!abcd] Any character not in abcd 
[[:class:]]  Any character that is a member of the specified class 
[[:alnum:]] Any alphanumeric character 
[[:alpha:]] Any alphabetic character 
[[:digit:]] Any numeral 
[[:lower:]] Any lowercase letter 
[[:upper:]] Any uppercase letter 

 
Wildcards can be combined, as shown in the following examples: 
 
[[:upper:]123]* Any file beginning with an uppercase letter or numbers 1, 

2, or 3 
*[[:upper:]123] Any file ending with an uppercase letter or numbers 1, 2, 

or 3 
[![:upper:]]* Any file that does not begin with an uppercase letter 

 
For example, if you have the following files in a directory: 
 

C214c_16s.seqs.fasta 

C214r_16s.seqs.fasta 

F1948c_16s.seqs.fasta 
F1948r_16s.seqs.fasta 
S37c_16s.seqs.fasta 

S37r_16s.seqs.fasta 

 

But you only wanted to list those that start with “S” and have “c_16s” in their 
filename you can use ls and wildcard characters: 

 
ls S*c_16s* 

 
Result: 
S37c_16s.seqs.fasta 

 
Note: 
Wildcards should not be used with commands that take regular expressions as 
arguments, like grep. Many of the characters have different meanings when used 
in regular expressions and may yield surprising and undesired results if placed 
within a regular expression. There are flags that can be passed to the grep 
command that allow use of regular expressions, if these are not called, however, 
your output will not be what you expect. 
 

Creating, moving, renaming, and removing files and directories 
 
mkdir foo Make directory called “foo” 
cp foo.txt foo_copy.txt Copy file foo.txt as new file foo_copy.txt 
cp -r my_dir my_copy_dir Copy folder my_dir and all of its contents into 

new directory my_copy_dir 
mv foo.txt new.txt Rename foo.txt as new.txt 
mv -r my_dir new_dir Rename directory my_dir to new_dir 
touch foo.txt Create new file in working directory called 

foo.txt 
rm foo.txt PERMANENTLY remove foo.txt 
rm -r my_dir PERMANENTLY remove directory my_dir 

CAUTION!! The rm command PERMANENTLY removes the item, it doesn’t go into 
the trash like it would if you deleted from the desktop. 
 



 11 

Viewing Files in the Command Line 

 

less foo.txt opens text file in new command window 

more foo.txt opens text file in same command window 

head foo.txt view first 10 lines of foo.txt 

head -n 25 foo.txt view first 25 lines of foo.txt 

tail foo.txt view last 10 lines of foo.txt 

tail -n 25 foo.txt view last 25 lines of foo.txt 

 

Sometimes you may want to view the contents of a file to 1) make sure that a 

command worked correctly, or 2) that you have the correct file, or 3) to check how 

many columns there are in the header. Usually, you don’t want to look at the entire 

file (especially if it contains 200 million lines!). You can view just part of the file 

using the less, more, head, and tail commands above.  
 

Unpacking and Compressing Files 
 

tar cvf -  file1 file2 file 

3 | gzip > foo.tar.gz 
takes files file1, file2, and file3 and creates 
a tar archive (foo.tar), and then uses gzip 
to compresses the tar archive (foo.tar.gz) 

tar czf foo.tar.gz file1 

file2 file3 
takes files file1, file2, and file3 and creates 
a tar archive (foo.tar), and then uses gzip 
to compresses the tar archive (foo.tar.gz) 

tar xfz foo.tar.gz unpacks compressed tar file “foo.tar.gz” 

gunzip < foo.tar.gz | tar 

xvf - 
unpacks compressed tar file “foo.tar.gz” 

gunzip foo.gz uncompresses gzip file 

tar -xvf foo.tar extract tar file 

unzip foo.zip unpacks compressed zip file 

bunzip2 foo.bz2 uncompresses bz2 file 

bunzip2 foo.tar.bz2 xvf 

foo.tar 

unpacks compressed bz2 file 

 

Text files are often compressed in order to make them easier to share or store. For 
genetic data, tar (tape archive) and gzip (GNU zip) are often combined. Tar allows 
multiple files to be combined into a single archive, and gzip allows this archive to 
be compressed into a single file. Zip is an unrelated program that performs 
archiving and compression with a single command. .zip files are typically not as 
compressed as tar.gz files.  
 

Note: File compression works better for files with repetitive information. Text files 

with DNA sequence data (e.g., fasta or fastq) typically compress well. Others file 

formats do not. For example, trying to compress some PDF files may make even 

bigger files! 

 
Important keyboard shortcuts 
 
arrow recalls previous command 
tab autocomplete when typing in terminal 
tab tab Show possible options for autocomplete 
ctrl+a Move to beginning of line 
ctrl+e Move to end of line 
ctrl+k Kill forward to end of line 
ctrl+forward/back 

arrow keys 
Move forward/back by one word 

alt+tab Cycle through open applications/windows 
ctrl+alt+l Lock screen 
ctrl+a Select all text 



 12 

ctrl+c Copy text 
ctrl+x Cut text 
ctrl+v Paste text 
ctrl+backspace Delete entire word 
ctrl+z undo 
ctrl+shift+z redo 

 
Note:  
When working in the terminal, the tab key is your best friend. Instead of typing out 
full paths, tab will give you options, autocomplete a command, and other magical 
things. Don’t forget to tab often! 
 

Metacharacters & expansions 
 
Metacharacters are special characters (e.g., *) that let you search for or change 
text patterns (e.g., any three-letter word beginning with f) rather than literal strings 
(e.g., the word foo). It is very important to understand that there are two different 
uses of metacharacters. In the first case, metacharacters are recognized by the 
bash shell and used in expansions. In the second case, metacharacters are 
recognized by certain programs or commands and used in regular expressions. 
Bash will first interpret any metacharacter it sees as an expansion metacharacter. 
To indicate to bash that the metachararacter is intended for the command, you 
must put the metacharacter(s) in quotes. This is very important. Both expansions 
and regular expressions use the same metacharacter types (asterisks, dots, 
slashes, etc.), but the metacharacters have different meanings when used in 
expansions vs. regular expressions. Wow, that's confusing! Expansions and 
regular expressions are explained in more detail below.   
 
Some characters have special meaning to bash. These metacharacters can be 
used to perform expansion before the command is performed. Types of expansion 
include: 
 
Pathname expansion: 
 
command partialpath* 

 
ls D*  
 
Results: 

lists all files and folders in working directory beginning with D 
 
Tilde expansion: 
 
command ~ 

 

ls ~ 

 

Results: 
 lists all files and folders in home directory 
 
Brace expansion: 
 
command text{pattern}text 

 

echo G12-{A,B,C}  
 
Results: 
G12-A G12-B G12 C 

 
echo G12-{1..4}.fa  
 
Results: 
G12-1.fa G12-2.fa G12-3.fa G12-4.fa 

 
Arithmetic expansion (integers only): 
 
command $((expression)) 

 

echo $((2+2))  
 
Results: 
returns answer 4 
 
Parameter expansion: 
 



 13 

command $variable 
 
head $good  
 
Results: 
would return the first 50 lines of the file G12-1.fa if I had previously defined the 
variable $good as G12-1.fa  
 

Regular Expressions 
 
Regular expressions are symbolic notations used to identify patterns in text. The 
main program used to work with regular expression in bash is grep. The 
programming language Perl has a richer assortment of notations able to rapidly 
identify patterns in text, but grep works well enough for searching small files using 
bash. 
 
grep stands for global regular expression print and is a command used to search 
text files for a specified regular notation and output any line containing a match to 
standard output. Basically, grep allows you to search through text.  
 
The basic structure of the grep command is as follows: 
 
grep options regex input 

 

where the first argument is regex, the regular expression or pattern being 
searched, and the second argument is the input file or directory to be searched. 
 
When searching for a pattern using grep, all characters in the pattern will be 
interpreted literally except the following metacharacters. 
 
^ Anchor: only accept match at beginning of line 
$ Anchor: only accept match at end of line 
. Any character. Example: grep .tar would yield star, ntar, and .tar 
{ } Match element a specific number of times {n} exactly n times. 

{n,m} at least n times but no more than m times. {n,} n or more 
times {,m} m or fewer times 

x{y} Exactly y repeats of x 
x{y,k} Between y and k repeats of x 

? Quantifier: make preceding element optional; match element zero 
or one more times 

* Quantifier: make preceding element optional; match element zero 
or more times 

x* 0 or more repeats of x 
+ Quantifier: make preceding element required; match element one 

or more times 
(x|y) Matches x or y 
| Alternation: signifies “or”. Search for pattern one or pattern two 
\d Any whole number 
\D Any non-number 
\w “word”, meaning letters and digits and _ 
\W Any non-word 
\s White space 
\S Non-white space 

 



 14 

 

Note:  

Several of the metacharacters above have different meanings to the shell (e.g., tell 

it to perform an expansion, etc.). Therefore, if the pattern contains a 

metacharacter, it is essential to put the pattern within single quotes. Alternatively, if 

you want some of the metacharacters to be interpreted by the shell (e.g., a 

$variable) then use double quotes.  

 
Quoting and escaping allow you to selectively turn off expansions. 

 
‘ All special characters within single quotes lose their meaning to the shell. 

No expansions are performed on characters inside single quotes.  
“ All special characters within double quotes lose their meaning to the shell, 

except $ (dollar sign), \ (back slash), and ‘ (back tick). Only expansions 
relating to arithmetic expansion, parameter expansion, and command 
substitution are performed.   

\ Used to quote (escape) a single character. Often used in combination with 
double quotes to suppress one (but not all) expansions. Also used to 
escape spaces in file names.  

\t tab 
\\ backslash 
\’ single quote 
\” double quote 
\n newline 
\r carriage return 

 
Say, for example, you want to find and print to screen all full sentences in the 

following file that begin with a capital letter: 

 
Source.  
License by making exceptions from one or more of its 

conditions.  
License would be to refrain entirely from conveying the 

Program.  
all NECESSARY SERVICING, REPAIR OR CORRECTION.  

SUCH DAMAGES.  
also add information on how to contact you by electronic and 

paper mail. 

  
You can use a combination of regular expression and escape characters to do so. 

 
grep "^[A-Z].*\." file.txt 

 
Source. 
License by making exceptions from one or more of its 

conditions. 
License would be to refrain entirely from conveying the 

Program. 
SUCH DAMAGES. 

 
So let's break down what this grep command does. It tells the shell to look for any 

capital letter [A-Z] at the beginning ^ of each line and pull any other information 

afterwards .* 
Because we want to pull sentences that end in a period, and regular expressions 

consider periods as special characters with special meaning, we must escape it 

with \. 
The \ character tells grep to treat the following character literally. 

 

Basic GREP and Other File Search Functions 

 

grep ‘pattern’ foo.txt search for lines with pattern in foo.txt and 
return it 

grep -i ‘pattern’ foo.txt search for lines with pattern (ignoring 
case) in foo.txt and return it 

grep ‘^pattern’ foo.txt search for lines with pattern only at 
beginning of line in foo.txt and return it 



 15 

grep ‘$pattern’ foo.txt search for lines pattern at end of line in 
foo.txt and return it 

grep ‘^$’ foo.txt search for blank lines  

grep ‘^pattern$’ foo.txt search for lines that contain the pattern 
and nothing else  

grep ‘^..j.r$’ foo.txt search for lines that contain only a five 
letter pattern in which the third letter is j 
and the last letter is r 

grep –v ‘pattern’ foo.txt search for lines WITHOUT pattern in 
foo.txt and return it 

grep –v ‘^@’ foo.txt search for lines WITHOUT null values 
(empty lines) and return it 

grep ‘pattern’ -A 1 foo.txt search for pattern in foo.txt and return it 
and one line after it. Useful for fasta files! 

grep ‘pattern’ -B 1 foo.txt search for pattern in foo.txt and return it 
and one line before it 

grep –E 

‘pattern1|pattern2|pattern3’ 

foo.txt  

search for any of the three patterns in 
foo.txt (interprets patterns as regular 
expressions, -E) 

grep ‘pattern’ foo.txt > 

foo2.txt 
search for pattern in foo.txt and print 
results to foo2.txt 

grep -c ‘pattern’ foo.txt search for lines with pattern in foo.txt and 
counts number of times pattern appears 

wc -l foo.txt output number of lines in foo.txt 

grep ‘pattern’ foo.txt | wc -

l 
output number of lines in which pattern is 
found in foo.txt 

 

Other Common Commands for Text Processing 
 

cat Concatenate files and print on the standard output 

sort Sort lines of text files 

uniq Report or omit repeated lines 

rev Reverse lines of a file or files 
tr Translate/modify characters in a file 

comm Compare two sorted files line by line 

diff Compare files line by line and find differences 

sed Stream editor for filtering and transforming text 

awk Pattern scanning and processing language 

echo Display a line of text 

 

sed stands for stream editor and it is a powerful command for editing file names or 

sequence names within a file on the fly (not altering the original file). Sed is 

especially useful in loops and in pipelines in which the output extension of one 

program needs to be changed in order for the files to be used by the next program 

in the pipeline. For example, suppose you have folder full of fasta files with the 

extension .fa but you need to change the extension to .fasta in order to run the 

imaginary program foo. You can do this easily with sed:  

 
ls | sed -e 's/.fa/.fasta/' | foo 

 
The syntax used above for sed is as follows: -e = regular expression, 's = 

substitute, /.fa/ = remove everything between the / characters, // = replace 

with everything between the / characters (in this example replace with nothing), ' = 



 16 

end substitution. However, note that sed does not actually change the original file 

name.  
 

Loops 
 
Loops are useful for performing repetitive tasks, such as systematically renaming 
all files in a folder or executing a command for multiple files. Say for example you 
have a directory of fasta files that you want to blast using the same parameters but 
don't want to type out the blast command for all of them -- this is a perfect time to 
use a loop! 
 
Basic bash loop structure: 
 
input | while read line; do command; done 

 

Your input should be a list of the variables/filenames/identifiers that you use to 
execute the loop. In our example it will be the IDs of the fasta files. You then pipe 
this command to the looping command while read line; do. Note that "line" in this 
statement can be any variable name you choose, line makes most sense, 
however, as each time you iterate through the loop the function will read a line in 
from your input to include as the new variable until it reaches the end of the list. 
You can then insert your command with $line as your variable. Finally, the loop is 
closed with the ; done statement.  

 
So for this example let's use a loop to blast all of the 16S sequence fasta files in 
the following directory: 

 
ls –lhrt 

total 76M 

-rw-rw-r-- 1 allison allison 5.4M Nov 22 23:11 

C214c_16s.seqs.fasta 

-rw-rw-r-- 1 allison allison 2.7M Nov 22 23:11 

C214r_16s.seqs.fasta-rw-rw-r-- 1 allison allison 7.1M Nov 22 

23:11 F1948c_16s.seqs.fasta 

-rw-rw-r-- 1 allison allison 2.6M Nov 22 23:11 

F1948r_16s.seqs.fasta 
-rw-rw-r-- 1 allison allison 4.8M Nov 22 23:11 

S37c_16s.seqs.fasta 
-rw-rw-r-- 1 allison allison 4.1M Nov 22 23:11 

S37r_16s.seqs.fasta 
-rw-rw-r-- 1 allison allison 4.4M Nov 22 23:11 

S454c_16s.seqs.fasta 
-rw-rw-r-- 1 allison allison 895K Nov 22 23:11 

S454r_16s.seqs.fasta 
-rw-rw-r-- 1 allison allison 3.7M Dec  5 09:19 

C214c_SHOT_rename.fasta 
-rw-rw-r-- 1 allison allison 1.8M Dec  5 09:20 

C214r_SHOT_rename.fasta 
-rw-rw-r-- 1 allison allison 5.0M Dec  5 09:21 

F1948c_SHOT_rename.fasta 
-rw-rw-r-- 1 allison allison 1.8M Dec  5 09:26 

F1948r_SHOT_rename.fasta 

 
We first need a list of the sequence IDs we want to use. Use a combination of ls 

and sed to print your IDs to  
ls *16s.seqs.fasta | sed 's/_16s.seqs.fasta//' 
C214c 
C214r 
F1948c 
F1948r 
S37c 
S37r 
S454c 
S454r 

 
Now we're ready to initiate our loop! Each time the your command is called the 

$line variable is replaced by the next line in your input (so in the first iteration 

C214c will be called, the second C214r, the third F1948c, etc...). Notice that we 



 17 

used the $line variable again to name our output files according to their sample 

IDs. Another important thing to remember about using variables in loops is that you 

must escape the variable if it is followed by text ($line\_16s.seqs.fasta) but this is 

not required if it is followed by a "." ($line.blast.out).  
ls *16s.seqs.fasta | sed 's/_16s.seqs.fasta//' | while read 

line; do blastn -query $line\_16s.seqs.fasta -out 

$line.blast.out -db greengenes.fasta -outfmt 6 -evalue 1e-10; 

done 
 

Advanced: customizing your shell 
 
When you work on several computers at once it is helpful to modify your shell 
prompt to differentiate between them. For example, I currently have accounts on a 
cluster and two other computers other than my own laptop. To differentiate 
between them I’ve modified a specific shell variable called PS1 in my .bashrc file to 
control how the prompt looks across computers. 
 
Your bash profile is a hidden file in your user directory (~) that is loaded every time 
you load your shell environment and contains configuration information and 
preferences for your terminal. For example, when you add a new directory to your 
path you are essentially adding a new line of text to your bash profile telling it that 
along with the default path you want to add this new path. On Linux, the bash 
profile will be located here: ~/.bashrc while on Macs it is here ~/.bash_profile. 
 
To change the color, computer name, and information displayed by your terminal 
prompt you need to redefine the PS1 variable in your bash profile. There are many 
things you can change but here’s what I have as an example: 
 
PROMPT_HOSTNAME='lobsang' 

PROMPT_COLOR='1;34m' 

PS1='\[\e]1;${PROMPT_HOSTNAME}\a\e]2;${PROMPT_HOSTNAME}:${PWD

}\a\ 

\e[${PROMPT_COLOR}\]\ 

[\u@${PROMPT_HOSTNAME} \w]\n \#\$ \ 

\[\e[m\]' 

 
Which gives me the following prompt: 
 

[mann@lobsang ~/github/fad_mouse] 
 5$ 

 
In my custom PS1 variable I set what I want my computer’s name to be 
(PROMPT_NAME=’lobsang’), that I want the prompt itself to be bolded and blue 
(PROMPT_COLOR=’1;34m’ where ‘1;34m’ is a color code), that I want it to 
explicitly tell me what working directory I am currently in (PWD), how many 
commands have I entered into the command prompt since beginning my current 
session (\#, in this case I’ve done 5) and that I want the place where I type 
commands to be just below the initial prompt (\n) (which is why it is two lines). Any 
commands that I enter into the terminal come directly after the $. There are 
endless possibilities to customize your prompt!  
 
Another way to customize your shell is to create aliases for programs or 
commands. For example, typing out a SSH command every time you want to log 
onto a server can be a bit tedious. To get around this I’ve set up different aliases to 
speed up this process. In my bash profile the following lines: 
 
alias zoo='ssh username@zoology.ubc.ca' 

alias ent='ssh username@entamoeba.zoology.ubc.ca' 

alias talon='ssh username@talon3.hpc.unt.edu' 

 
mean that instead of typing out the full SSH command, path and all I can just type 
in “zoo” or “ent” or “talon” and my shell knows that what I really mean are those 
SSH commands.  
 
You can even rename built in programs by creating an alias in your bash profile. 
As an example, I work on both Linux and Mac machines and while they have a lot 
of similarities, there are some annoying differences. The command “sed” is found 
in both Linux and Mac OS but they behave differently. To run the Linux style sed 
on my Mac I downloaded a different program “gsed” but I also don’t want to have 
to remember that it’s called a different thing between OS. Aliases to the rescue! 
 

alias sed=gsed 

 
Working on servers 
 



 18 

Connecting to remote hosts (i.e., other computers) 
 
Often bioinformatic pipelines require more computational power than what you 
typically find on a personal laptop or desktop. In these cases you’ll need to connect 
to and run jobs on a remote computer cluster. A computer cluster is a set of 
connected computers that work together where each computer is known as a node 
that greatly improve the performance and speed of a single computer alone. You 
can “tunnel” or log into a remote cluster from your own computer via the terminal 
by using the SSH protocol (Secure Shell tunneling). Similarly SCP (Secure Copy 
Protocol) can move folders and files between your personal computer (the local 
host) and a cluster (remote host). 

 
ssh user@address Remote connect to host 
scp foo.txt user@address:/path/ Upload file foo.txt from your current 

working directory to somewhere on the 
remote host (must specify path!) 

scp user@address:/path/foo.txt 

/home/ 

Download foo.txt from remote host and 
save in folder /home/ 

ftp ftp.ncbi.ncbi.nih.gov Remote connect to NCBI using FTP 
(File Transfer Protocol)  

 
Note: 
By default SSH and SCP will use port 22 at the remote host to form a connection 
between computers. While SSH and SCP are already secure protocols, 
occasionally system administrators will change the port number to increase 
security. In this case you would add -p (SSH) or -P (SCP) to your command along 
with the new port number. 

 
Job queue systems 
 
Because many people may have access to a cluster, they often come equipped 
with software that controls when and how long a job runs on the cluster called job 
schedulers. The job queue refers to a data structure that contains jobs that are in a 
list to run. Users submit a small script that contains the “job” they want executed to 
the queue to be processed after which the job scheduler maintains the queue in 
the background. Along with the program that the User wants to run, typically a job 
script also lists the amount of memory that needs to be allocated, how long the job 
should run, and other information. There are many different flavors of job 

scheduling software, but they all follow the same general structure. For example, if 
your cluster uses PBS (Portable Batch System), your job script may look 
something like this: 
 
#!/bin/bash  

#PBS -l nodes=1:ppn=2  

#PBS -l walltime=00:00:59  

cd /home/mann/test/  

align_seqs.py -i ASV18.fa -t LTPs132_salmonella_ref.align.fa 

 
In the above example, the first line identifies which shell you are using (in this case 
bash), the second line tells the job scheduler the number of nodes and processors 
that you would like it to allocate to your job, the third line is how much wall-clock 
time is requested, and finally the fourth and fifth lines are the code that you want 
executed (in this case the first line changes into the /test directory and the second 
runs the program align_seqs.py). Every cluster is different but there are plenty of 
examples of scripts online! 

 
Parallelization 
 
Parallel computing is a type of computing where a large task can be split into 
smaller tasks which are solved simultaneously, greatly speeding up the time that it 
takes to solve the problem. Parallel computing can be performed on multi-core and 
multi-processor computers or can be split over multiple computers in the case of 
cluster computing. One of the easiest ways to run a program in parallel on Unix 
and Linux computers is by using the shell tool GNU parallel 
(https://www.gnu.org/software/parallel/). Say you have multiple fastq files that you 
need to perform the same task on. You could run these through a for loop (see 
section on loops) but as loops run serially this could take a long time if you have 
many many files. Instead you can run multiple files at once using GNU parallel. For 
example, if you wanted to run the following command in parallel: 
 
This: 
ls *fastq.gz | while read line; do gzip -d $line; done 

Becomes this: 
ls *fastq.gz | parallel ‘gzip -d {}’ 

 
Easy! In the above example your zipped up fastq files will be unzipped by GNU 
parallel. By default, parallel will take up as many cores as your computer has at its 

https://www.gnu.org/software/parallel/


 19 

disposal. You can set a preferred number of cores with the option -j  (e.g., -j 10 will 
use 10 cores). 
 

File permissions 
 
Typically, the user who created or uploaded a file or directory to a server is the 
“owner” which by default limits access from other users. To share files or folders 
across multiple users you may need to change the permissions for that file or 
folder. To do this you can use the chmod and chown commands.  
 
You can see the current permissions and other information about a file using the 
list command in long format: 
 
ls -l 

 
Beside your file you’ll see a string of characters that looks something like this: 
 
-rwxrwxrwx 

 
Each character in this string tells you what the item is as well as the permissions 
set for the owner of the item, the group assigned to that item, and others. If the first 
character in your string is – that means the item is a file, if it is d the item is a 
directory. The next three characters indicate the permissions set for the owner of 
the item, the following the permissions of the group, and the final the permissions 
of other users on the server. If all positions have a r, w, and x that means that that 
particular person or group has read (r), write (w), and execution (x) permissions. A 
dash indicates that that particular permission is not allowed. So for example the 
following string is a file that the owner and group have all permissions while others 
only have read permissions but cannot write or execute the file. 
 
-rwxrwxr-- 

 
You can assign new permission status to all three groups using chmod and a three 
digit code: 
 
0: No permission 
1: Execute permission only 
2: Write permission only 
3: Write and execute permissions 

4: Read permission only 
5: Read and execute permissions 
6: Read and write permissions 
7: Read, write, and execute permissions 
 
So if I wanted to give the owner all permissions (7), the group read and write 
permissions (6) and read and execute permissions to others (5) we would type: 
 
chmod 765 my_file.txt 

 
To completely change ownership or group ownership of a file or folder you can use 
chown where a colon separates the owner:group status of an item on your server. 
For example, to change the owner of a file (that, importantly, you already have 
ownership of) to yan and the group to viviana: 
 
chown yan:viviana my_file.txt 

 

Advanced: other useful commands 
 
who See list of all users currently logged into the server 
whoami Prints your user name 
mail Send mail from the command line. Example with file attachment: 

mail -A my_file.txt -s “subject header” 

user@mail.com < /dev/null 

wall Send a message to all users on the server. Type in wall then your 
message and then CTRL+D to send the message 

df Check disk space on your machine 
du Check how much disk space your current working directory is using  
kill Kill a process currently running on your machine. You need to give 

the kill command your job’s PID number which can be found by 
typing ps 

tree Prints directories and folders in a tree like fashion from your current 
working directory 

passwd Change your user account password 
uname -a  List information about your current system 
top Consistently updated log of what processes are running, how much 

memory they are using, who submitted the job, etc. For a better 
experience install htop as an alternative! 



 20 

wget Download files from the web. For example: wget 
http://github.com/aemann01/my_file.py 

 

 
Note: 
If you send emails to yourself or others be aware that they are often automatically 
filtered into the spam folder so if it didn’t seem to work check there! 
 

Version control 
 
Version control is a valuable tool in bioinformatics and refers to software tools that 
record changes in a file or a set of file overtime. Version control software allows 
you to manage and track changes to files as well as provides a way for teams of 
researchers to collaborate on projects. Scripts and other documents are kept on a 
“master branch” in the software from which branches can be split and merged. A 
visual example of version control workflow can be found below: 
 

 
 
 

Git and GitHub 
 
There are many different version control options but one of the most popular is Git. 
Git is an open source code management system while GitHub refers to the online 
hosting of Git “repositories” (essentially a project folder). Many open source 

bioinformatics software is hosted on GitHub so it is important to know how to 
access GitHub repositories. Additionally, you can host your own projects (for free) 
on GitHub. To do this you need to 1) add a new repo to your GitHub account, 2) 
initialize a directory on your local computer as a Git repository, 3) add this to your 
GitHub repository as the main branch, 4) add those files within the directory that 
you want to track, 5) commit any changes that you’ve made and finally, 6) push 
your changes to the main branch of your repository. On the command line this 
looks like: 
 
cd /path/to/my/git/repository 

echo “# MyRepo” >> README.md 

git init 

git add README.md 

git commit -m “My first commit message” 

git remote add origin https://github.com/<your account>/MyRepo.git 

git push –u origin master 

 

You can check whether or not your files are added to the push queue or if they 
have been changed with: 
 
git status 

 

Once your GitHub repository is set up you can start tracking your files with the add-
commit-push trio of commands. 
 

git add my_file.txt 

git commit –m “comment on the changes I made” 

git push 

 
Conda environments 
 
A fundamental challenge in  bioinformatics is analytic reproducibility. In a perfect 
world, someone should be able to take code and data that you’ve generated and 
run them on their own computer to produce the same figures and results. In 
practice this is tricky because the other person might have different versions of the 
software or software dependencies you used installed (a situation often called 
“dependency hell”). You can limit these problems by generating “containers” or 
“environments” that package up all of your code and its dependencies independent 
from other packages installed on your computer. Popular container programs 
include Docker and Snakemake. For the purposes of this cheat sheet we’ll look at 



 21 

one of the simpler ways to manage package distributions for scientific 
reproducibility with conda environments. The first step is to install conda using 
miniconda (https://docs.conda.io/en/latest/miniconda.html) or anaconda 
(https://www.anaconda.com/). Once installed you can create a conda environment 
with specific package versions in YAML format (“YAML Ain’t Markup Language”). 
Example environment.yml file: 
 
name: rpo_gene 

channels: 

  - defaults 

  - bioconda 

  - conda-forge 

dependencies: 

  - bioconda::blast=2.10. 

  - conda-forge::parallel=20200522 

  - bioconda::bedtools=2.29.2 

  - bioconda::seqtk=1.3 

 
In the first line we need to give a name to the environment (in this case: rpo_gene), 
next we set the conda channels to look for packages in (defaults, bioconda, conda-
forge), and finally list the packages and version of those packages we want to 
install within that environment (notice that the syntax includes which channel we 
want to look for the package in). To then create this environment, you would run: 
 
conda env create environment.yml 

 
Then to activate the environment: 
 
conda activate rpo_gene 

 
And finally, to exit the environment: 
 
conda deactivate 

 

Jupyter notebooks 
 
Another useful tool for data analysis reproducibility are jupyter notebooks 
(https://jupyter.org/). Jupyter notebook is a web-based application that allows 
researchers to share documents containing code, text, analyses, and 

visualizations. While jupyter notebooks were originally developed to share code 
written in the python language, other languages can be incorporated (e.g., R) to 
create visually appealing and reproducible analysis files. To start a jupyter 
notebook server: 
 
jupyter notebook 

 
This command will open up a webpage that shows your current working directory 
contents. To create a new notebook click on the “New” dropdown menu and 
choose the appropriate programming language – this will create a new file in your 
working directory called Untitled.ipynb. From here you can add code and notes to 
your notebook which will compile any analyses you do within the ipynb file. For an 
example jupyter notebook using R: https://hub.gke.mybinder.org/user/binder-
examples-r-xfdla3li/notebooks/index.ipynb 
 

Genomics basics 

 
Structure of common files in genomics 
 
Data files in the biological sciences are typically stored as text files or binary files 
that follow specific formatting rules. Much of the work of someone who does 
bioinformatics is converting data from one file format to another so that it can be 
read or used by a program. Knowing how files should be formatted can be key in 
getting quick information about your data as well as troubleshooting when things 
go wrong. 

 
FASTA 
 
FASTA-formatted files can contain many sequence entries. Each entry consists of 
two lines. The first line contains the sequence name and any associated comments 
or metadata. Different parts of the first line may be separated common separators, 
such as commas, colons, semicolons, or pipes. The second line contains the 
sequence information consisting of IUPAC (nucleotide) and IUB (amino acid) 
codes. Dashes signify gaps. X signifies a masked position. Case is ignored; 
numbers are ignored; special characters such as spaces, tabs, and asterisks are 
ignored. FASTA files are usually given an extension. Common extensions for 



 22 

nucleic acid data are: fasta, .fas, .fa, .fna, .ffn, and .seq. Non-coding RNA data is 
given the extension .frn. The extension for protein data is .faa. 
 
Example of FASTA entry: 
 
>EAS139:136:FC706VJ:2:2104:15343:197393 

ATCACGGATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCAC

AGTTT 
 

Example of FASTA nucleotide entry formatted according to the NCBI standard: 

 

>gi|862687|gb|U26045.1|MCU26045 Mycoplasma capricolum 

capricolum California kid 16S ribosomal RNA (rrnA) gene, 

partial sequence 

CTGGCGGCATGCCTAATACATGCAAGTCGAACGGGGGTGCTTGCACCTCAGTGGCGAACGG

GTG 
 

Example of FASTA protein entry formatted according to the NCBI standard: 

 

>gi|31563518|ref|NP_852610.1| microtubule-associated proteins 

1A/1B light chain 3A isoform b [Homo sapiens] 

MKMRFFSSPCGKAAVDPADRCKEVQQIRDQHPSKIPVIIERYKGEKQLPVLDKTKFLVPDH

VNMSELVKIIRRRLQLNPTQAFFLLVNQHSMVSVSTPIADIYEQEKDEDGFLYMVYASQEF 
 

 
FASTQ 
 
FASTQ-formatted files are similar to FASTA files but contain additional quality 
information for each nucleotide. Each entry consists of four lines. The first line is 
proceeded with a @ and contains the sequence name. The second line contains 
the sequence data. The third line consists of only a + character. It signifies that the 
fourth line contains the sequence quality data. FASTQ files are usually given an 
extension. Common extensions are: fastq and .fq. 

 
Example of FASTQ entry obtained from Illumina sequencer (after Casava v.1.8):  

 
@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG 

GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC 

+ 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9IC 

 

Illumina uses a systematic naming system for its output. For Illumina data 
generated after Casava 1.8, it follows this system: 



 23 

EAS139 Unique instrument name 
136 Run ID 
FC706VJ Flowcell ID 
2 Flowcell lane 
2104 Tile number within flowcell lane 
15343 'x'-coordinate of the cluster within the tile 
197393 'y'-coordinate of the cluster within the tile 
1 the member of a pair: always 1 for single end sequencing; 1 or 2 for 

paired-end sequencing 

Y Y if read is filtered, N otherwise 
18 0 when none of control bits are on, otherwise it is an even number 
ATCACG index sequence 

 
The quality value (Q) for each basecall is an integer mapping of the probability (p) 
that the basecall is incorrect. Q is usually calculated using the Phred quality score 
formula:  
Q = -10 log

10 
p 

 
Low Phred scores denote low quality, while high scores denote high quality. For 
example, a Phred score of 10 corresponds to a basecall accuracy of 90%, a score 
of 20 corresponds to a basecall accuracy of 99%, a score of 30 corresponds to a 
basecall accuracy of 99.9%, and so forth. Applied to a 100 bp sequence, using a 
Phred score cutoff of 30 results in a 90% chance that all bases were correctly 
called. Using a Phred score cutoff of 35 results in a 95% chance that all bases 
were correctly called. Applying a Phred score cutoff of 35 to an Illumina dataset of 
1x100 bp reads means that, under ideal conditions, about 95% of your reads will 
have no basecall errors, while about 5% of your reads will contain sequencing 
error(s).   
 
FASTQ quality information is encoded in printable ASCII characters (characters 34 
to 128) corresponding to Phred scores 0 to 93. The quality values in order from 
lowest quality to highest quality are: 
 

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ 

[\]^_`abcdefghijklmnopqrstuvwxyz{|}~  
 
The above ASCII characters have been color coded for ease of interpretation. Red 

characters correspond to Phred scores <16. These base calls are unreliable and 
should be discarded. Orange characters correspond to medium confidence Phred 
scores of 16-34. A judgment call must be made on whether to keep these 
basecalls. Green characters correspond to Phred scores 35-41 and signify high 
confidence basecalls that should be kept. Blue characters correspond to Phred 
scores >41 and signify very high quality base calls. Phred scores >41 may be 
generated for Sanger data, but are almost never seen for current Illumina 
chemistry. 
 
Example of FASTQ entry retrieved from NCBI Sequence Read Archive (SRA, 
formerly Short Read Archive): 
 

@SRR001666.1 EAS139:136:FC706VJ:2:2104:15343:197393 length=36 

GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC 

+SRR001666.1 EAS139:136:FC706VJ:2:2104:15343:197393 length=36 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9IC 

 
 
SAM and BAM 
 
Sequence Alignment/Map (SAM) files are sequence alignment files. Bowtie2 
outputs SAM files. SAM files are tab-delimited text files consisting of an optional 
header and an alignment section. Header lines begin with @. Each alignment line 
has 11 mandatory fields. Eight additional optional fields may also be present. SAM 
files are unsorted - this means that the alignment data appears in the order that the 
reads that were searched using Bowtie2; they are not ordered by where they 
appear in the reference genome. Here is an example of a SAM file with one 
sequence: 



 24 

@HD VN:1.0 SO:unsorted 
@SQ SN:gi|674660337|ref|NC_024711.1| LN:97065 
@PG ID:bowtie2 PN:bowtie2 VN:2.1.0 
ACB052:117:D2AGKACXX:6:1101:6343:2414 89 

gi|674660337|ref|NC_024711.1| 76501 3 100M = 76501 0 

CATTTTTAACATCACCGTCTAAATCACCTGATA 

DDDDDDEDDDDBB?DDEDEEEEED@DFFFHHHH AS:i:-38 XN:i:0 XM:i:7 

XO:i:0 XG:i:0 NM:i:7 MD:Z:14T0T0A7T24A2T1C45 YT:Z:UP 

 
The header (shown in blue) may consist of up to five lines, each containing 

different information. Typically, the SAM files we generate will have three header 

lines. Header @HD contains information about the SAM file version and setup. 

Header SQ contains information about the reference sequence. Header PG 

contains information about the program that generated the SAM file. Refer to the 

samtools manual for more detailed information about the header: 

http://samtools.github.io/hts-specs/SAMv1.pdf   

 

The eleven mandatory tab separated fields (columns) are: (1) QNAME: the 

query/sequence name; (2) FLAG: the bitwise flag; (3) RNAME: the reference 

sequence name; (4) POS: 1-based leftmost mapping position; (5) MAPQ: the 

mapping quality; (6) CIGAR: CIGAR string; (7) RNEXT: reference name of the 

mate/net read; (8) PNEXT: position of the mate/next read; (9) TLEN: observed 

template length; (10) SEQ: segment sequence; (11) QUAL: ASCII of Phred-scaled 

base quality+33.  

 

In addition to these mandatory fields, additional optional fields may follow with the 

format TAG:TYPE:VALUE. The only optional field we commonly use is the last 

one, which reports whether the paired-end reads mapped concordantly within 

500bp to the same genome (YT:Z:CP), or if the paired-end reads did not map 

(YT:Z:UP). Discordant or unpaired reads indicate genome rearrangement (e.g., 

indels, inversions, etc.) in the query sequence relative to the reference sequence. 

For more information on these optional fields, see the samtools manual: 

http://samtools.github.io/hts-specs/SAMv1.pdf   

 

Note: When using samtools, it is VERY important to provide the flags in the correct 

order!  

  
BAM 
BAM is a SAM file that has been converted into binary format (Binary Sequence 

Alignment/Map). BAM files can typically be compressed to much smaller sizes than 

their corresponding SAM files. For this reason, it is often more efficient to transfer 

sequence alignment files as BAM files. BAM files, however, are not human 

readable. This is what the first few lines of the BAM file corresponding to the above 

SAM file looks like: 

  
?BC?sr?e?```p?p? 
                ?2?3? 
                     ??*?+?/*IM?? 
                                 

??JϬ137133066?)JM??s?702174?3????4703?p??t?J?//?L5? 
?b?%?xMdЬfdS?                                                                       

??3?F 
I@?????E??e?q?-`!Fd?yVbdE ?YvnwK?Cp,$hU???=g ׸o???<?e@u?1?4 s0 
                                     

?0k?`1???PÙ?>q??}?ֽ ٽ?????? ڃ ??[???ŏ~?s????g??gx???p6??7?qz??t?

?37s?z8??O????t4??蹽

?2w<?g?????'|W:r????J//?0?y&s??u?^!>p~??B??~EQ?_??Z?DB??X\ 

 
GenBank 
 
The GenBank database is a collection of all publically available nucleotide 
sequences along with their corresponding protein translations maintained by NCBI 
(the National Center for Biotechnology Information). Submissions to GenBank can 
be downloaded via NCBI’s FTP server or through the web using the Batch Entrez 
site (https://www.ncbi.nlm.nih.gov/sites/batchentrez) using the unique accession 
numbers assigned to each sequence.  
 

http://samtools.github.io/hts-specs/SAMv1.pdf
http://samtools.github.io/hts-specs/SAMv1.pdf


 25 

GenBank formatted files have a number of defined fields that provide information 
about what, where, and how the sequence was obtained. Below is an example 
GenBank entry. The LOCUS filed includes the locus name (BI784134), length of 
the sequence (150 bp), molecule type (mRNA), GenBank division (EST), and the 
modification date (26-SEP-2001). The DEFINITION field is a brief description of 
the sequence and can include the source organism, gene or protein name, etc.  
 
The ACCESSION is a unique identifier that is assigned to that particular GenBank 
entry. Because the accession number never changes after being uploaded to the 
database a separate VERSION field includes the accession number followed by a 
period and the version of that sequence. If any changes are made to the example 
below, for example, the version number would be updated to BI784134.2. The 
KEYWORDS field includes a word or phrase that describes the sequence. If no 
keywords are included this field only has a period. SOURCE indicates what 
organism the sequence derived from but doesn’t necessarily need to be the 
scientific name while ORGANISM is always the formal scientific name. The 
REFERENCE field includes the sequence coordinates related to any publications 
related to this entry followed by the AUTHORS, TITLE, and JOURNAL, even if the 
project is unpublished.  
 
FEATURES include information about the gene and gene products. Finally, 
ORIGIN is the sequence itself followed by // that signals the end of the file. 

 
LOCUS       BI784134 150 bp mRNA linear EST 26-SEP-2001 

DEFINITION  kh31c04.y1 Ascaris suum male head pAMP1  

ACCESSION   BI784134  

VERSION     BI784134.1  

KEYWORDS    EST 

SOURCE      Ascaris suum (pig roundworm)    

ORGANISM  Ascaris suum  

REFERENCE   1  (bases 1 to 150)    

AUTHORS   McCarter,J et al.    

TITLE     The Washington Univ. Nematode EST Project 

JOURNAL   Unpublished  

COMMENT     Contact: McCarter JP  

FEATURES    Location/Qualifiers       

 source  1..150 

  /organism="Ascaris suum" 

  /mol_type="mRNA"  

  /db_xref="taxon:6253" 

  /sex="male" 

  /dev_stage="Adult"  

ORIGIN  1 atcgcatggt ctcgaaccgg cgacgtgtct atcaagtgtc  

 61 gtagtttatg tgcctaccat ggttgtaacg ggtaacggag  

 121 gagggagcct gagaaacggc taccacatcc  

// 

 

 
BLAST 
 
BLAST (Basic Local Alignment Search Tool) was developed in the mid 1980s and 
to this day remains the gold standard for comparing query sequences to reference 
sequences. BLAST can be performed through NCBI’s web portal 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) or through the command line. While 
BLAST is a powerful bioinformatics tool, the algorithm is very slow and therefore 
should not be used for large sequence datasets. BLAST results can be stored in a 
variety of different formats set on the command line with the --outfmt option. The 
most useful format (for most downstream applications) is --outfmt 6 which gives the 
results in a tab separated text file. The default fields in this format option are as 
follows: 
 

1 qseqid Query sequence ID 

2 sseqid Subject (reference) sequence ID 

3 pident Percentage of identical matches 

4 length Alignment length 

5 mismatch Number of mismatches 

6 gapopen Number of gap openings 

7 qstart Start of the alignment in the query sequence 

8 qend End of the alignment in the query sequence 

9 sstart Start of the alignment in the subject sequence 

10 send End of the alignment in the subject sequence 

11 evalue Expected value score 

12 bitscore Bit score 

 
Note: 
The BLAST e-value is the number of expected hits of a similar quality score that 
could be found by chance. So for example, an e-value of 10 means that up to 10 
hits can be expected to be found just by chance. The lower the e-value the better. 

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=6253
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=6253
https://blast.ncbi.nlm.nih.gov/Blast.cgi


 26 

By default, BLAST uses an e-value of 10 so you should set a lower cutoff threshold 
when running the program. On the other hand higher the bit score, the better the 
sequence similarity. The bit score is a log2 scaled value that reflects the required 
size of a theoretical sequence database in which the match between the query and 
reference could be found by chance. 
 
You can also set your own output format in the BLAST command line. For 
example, the following output format flag will record the data in a tab separated 
text file where the first column is the query ID, the second is the subject ID, and the 
third is the subject common name(s) separated by “;”. 
 
--outfmt ‘6 qseqid sseqid scomnames’ 

 
GFF 
 
General Feature Format (GFF) is used to describe genes and other features of 
DNA, RNA, and protein sequences. GFF files are tab delimited with 9 fields per 
line of text: 
 

1 sequence Name of the sequence where the feature is located 

2 source Keyword identifying the source of the feature (e.g., a 
program or an organization) 

3 feature Feature type name (e.g., “gene” or “exon”) 

4 start Genomic start of the feature with a 1-base offset 

5 end Genomic end of the feature with a 1-base offset 

6 score Numeric value that indicates the confidence of the source in 
the annotated feature. Null value = “.” 

7 strand Single character that indicates the strand of the feature 
(positive or negative) 

8 phase Phase of CDS feature; can be either 0, 1, 2 (for CDS 
features) or “.” (for everything else) 

9 attributes All the other information pertaining to this feature 

 

 
VCF 
 
Variant Call Format (VCF) files are text files that store information on gene 
sequence variations. Unlike GFF which store all of the genetic data, VCF files only 

record the variations and reference genome making them more portable. An 
example VCF file can be found below: 
 
##fileformat=VCFv4.3 ##fileDate=20090805 

##source=myImputationProgramV3.1 

##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta 

##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d

618ff66beb2da,species="Homo sapiens",taxonomy=x> ##phasing=partial 

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples 

With Data"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total 

Depth"> ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele 

Frequency"> 

##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele"> 

##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, 

build 129"> ##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 

membership"> ##FILTER=<ID=q10,Description="Quality below 10"> 

##FILTER=<ID=s50,Description="Less than 50% of samples have data"> 

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> 

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype 

Quality"> ##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read 

Depth"> ##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype 

Quality"> #CHROM POS      ID         REF   ALT    QUAL  FILTER   

INFO                             FORMAT       NA00001         

NA00002          NA00003 20     14370    rs6054257  G     A      29    

PASS    NS=3;DP=14;AF=0.5;DB;H2           GT:GQ:DP:HQ  

0|0:48:1:51,51  1|0:48:8:51,51   1/1:43:5:.,. 20     17330    .          

T     A      3     q10     NS=3;DP=11;AF=0.017               

GT:GQ:DP:HQ  0|0:49:3:58,50  0|1:3:5:65,3     0/0:41:3 20     

1110696  rs6040355  A     G,T    67    PASS    

NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ  1|2:21:6:23,27  

2|1:2:0:18,2     2/2:35:4 20     1230237  .          T     .      47    

PASS    NS=3;DP=13;AA=T                   GT:GQ:DP:HQ  

0|0:54:7:56,60  0|0:48:4:51,51   0/0:61:2 20     1234567  microsat1  

GTC   G,GTCT 50    PASS    NS=3;DP=9;AA=G                    
GT:GQ:DP     0/1:35:4        0/2:17:2         1/1:40:3 

 
VCF files begin with a header denoted by ## and includes metadata describing the 
file as well as keywords that describe the fields used in the body of the file (e.g., 
INFO, FILTER, FORMAT). The body of VCF files is tab separated and includes 8 
mandatory columns: 
 

1 CHROM The name of the sequence on which the variation is called 

2 POS The 1-based position of the variation on the given sequence 



 27 

3 ID The identifier of the variation (e.g., using a database like 
dbSNP). If unknown: “.” 

4 REF The reference base at the given position on the given 
reference sequence 

5 ALT A list of alternative alleles at this position 

6 QUAL The quality score associated with the inference of the given 
alleles 

7 FILTER A flag indicating which of a given set of filters the variation has 
passed 

8 INFO An extensible list of key-value pairs describing the variation 

9 FORMAT An (optional) list of fields for describing the samples 

+ SAMPLEs For each (optional) sample described in the file, values are 
given for the fields listed in FORMAT 

 

 

A brief introduction to programming 
 
Free online programming courses 
 

• Code Academy: http://www.codeacademy.com   

• edX: https://www.edx.org/learn/computer-programming 

• Harvard University: https://online-
learning.harvard.edu/subject/programming 

• Khan Academy: https://www.khanacademy.org/computing/computer-
programming 

• And many more! 

 
Python 
 
Python is a flexible and easy to read programming language often used in the 
biological sciences. It was designed in the late 1980s by Guido van Rossum 
(Python’s official Benevolent Dictator for Life) and was named after the British skit 
group, Monty Python. Unlike other common programming languages (e.g., Perl), 
Python relies heavily on whitespace to structure its code.  

 
Official Python link: https://python.org 

 
Best Python books: 
Python Cookbook: Recipes for Mastering Python 3. Brian K. Jones & David M. 
Beazley 
Python for Data Analysis: Data wrangling with Pandas NumPy. Wes McKinney 
Automate the Boring Stuff With Python. Al Sweigart. 
 
Online Python learning resources: 
Learn Python the Hard Way: https://learnpythonthehardway.org/ 
BioPython Tutorial and Cookbook: 
http://biopython.org/DIST/docs/tutorial/Tutorial.html 
Code Academy: https://www.codeacademy.com/learn/learn-python 

 
Installing Python 
Windows: https://www.python.org/downloads/windows/ 
On Mac and Linux, Python should already be installed, check which version in the 
terminal by typing: 
 
python --version  

 
Note: 
A major shift happened between Python 2.7 and Python 3 in that the old syntax 
rules in Python 2.7 are not compatible with Python 3 (this is the first time this 
happened in any Python version). As a result some Python scripts run with 2.7 
while other with 3. As people transition over to 3 it’s a good idea to learn Python 3 
but also to have a copy of Python 2.7 on your computer to run scripts that aren’t 
updated to the new rules. If you try to run a python program using 2.7 and you get 
a “syntax error” try running it with 3 (or vice versa), 9/10 this fixes the problem!  
 
Basics of Python syntax 
Python programs are written as text documents that end with the .py extension. 
Typically, python scripts begin with #!/usr/bin/python (#! Is called a shebang), 
which indicates the location of your python install (though this isn’t strictly 
necessary). Unlike other programming languages, (e.g., Perl or R), blocks of code 
are not specified by brackets or bracers. Instead, indentations and colons indicate 
blocks of code in python. For example: 
 
If (x > y): 

 print(“x is greater than y”) 

http://www.codeacademy.com/
https://www.edx.org/learn/computer-programming
https://online-learning.harvard.edu/subject/programming
https://online-learning.harvard.edu/subject/programming
https://www.khanacademy.org/computing/computer-programming
https://www.khanacademy.org/computing/computer-programming
https://learnpythonthehardway.org/
http://biopython.org/DIST/docs/tutorial/Tutorial.html
https://www.codeacademy.com/learn/learn-python
https://www.python.org/downloads/windows/


 28 

else: 

 print(“x is less than or equal to y”) 

 
In this script, a print statement is run depending on whether argument x is larger or 
smaller than y. It’s good practice to add comments to your code so that other 
people can more easily read it (or you can still understand it 3 months after you 
wrote it!). Comments in both Python and R are denoted by the hash symbol #.  
 
 If (x > y): 

 print(“x is greater than y”) 

else: 

 print(“x is less than or equal to y”) # this line 

won’t be read if first condition is true  

 
Anything beyond the # on the same line is ignored by the Python interpreter. 
 
Data types in Python 
Variables or objects that you define or import into the Python workspace have 
different data types. Data types are not declared by the user (as is the case with 
other low- or middle-level languages like C), instead they are inferred from the 
assigned statement. It’s important to note that because of this, sometimes Python 
will infer the WRONG data type. Be sure to check that your variables are assigned 
in the proper format to avoid problems down the road. 
 
The most common data types in Python include: 

• Boolean: True/False 

• Integer: Any full number (e.g., 5, 1000, 48939) 

• Float: A number with a fractional value (e.g., 4.5, 3.002, 0.000004) 

• String: A letter, sentence, word (e.g., “A”, “hello there”, “kdjfijis4527hfdj”) 

 Note that strings can also contain numbers if they are mixed up with 

other data types 
 
Statements and expressions 
Variables or objects are assigned to some value with the = sign. For example, if I 
wanted the string “Hello world” to be assigned to a variable I could do so by: 
 
myString = “Hello world” 

 

This stores “Hello world” in the variable myString but it does nothing else to it. Now 
if I wanted my string to be printed to the standard output of the terminal you can 
call the print statement: 
 
print(myString) 

 
Some object types in Python 

• List: a mutable (i.e., changeable) and ordered sequence of elements 
delineated in Python code by square brackets [ ] 

• Dictionary: An object type that consists of keys that are associated with 
specific values. Think of a word in a dictionary as the key and the 
definition as the value. Values can be the same across keys but the keys 
themselves must be unique. Delineated by curly brackets and a colon 
{key:value} 

• Tuple: an immutable (i.e., unchangeable) sequence of objects (very 
similar to a list) 

 
Importing libraries 
There are many useful libraries written in Python that are set up to manage 
biological data that can be imported into a script so that various modules can be 
used (some of my favorites include Pandas, NumPy, BioPython, MatplotLib). As 
many libraries in Python are not included by default you must explicitly load them 
into your Python environment. For example, if you wanted to use modules from the 
BioPython library in your script you would add the following line somewhere near 
the beginning of your script: 
 
import Bio 

 
Where import is the library importation command and Bio is the name of the 
BioPython module. More typically, however, you’ll want to only load specific tools 
from the module. For example, if I want to import SeqIO, a function that can be 
used to load various sequence file types: 
 
from Bio import SeqIO 

 
Writing a function 
Functions are typically short programs that perform a single or a couple tasks that 
can be linked together to create more complicated scripts. The basic structure of a 
Python function is: 
 



 29 

def myFunctionName(input parameters): 

 some set of conditions to run 

 
Example script Hello World: 
 
#!/usr/bin/python3 

 

import sys 

 

def main(): 

 if len(sys.argv) >= 2: 

  name = sys.argv[1] 

 else: 

  print(“Please enter your name:”) 

 print(“Hello”, name) 

 
In this script we import a module called sys which gathers information from your 
system and defines a function that prints out “Hello” and the name of the person 
running it. From the command line this program would be run as such: 
 
python3 helloWorld.py <name> 

 
Python interactively with iPython 
One of the nicest things about Python is it’s interactive shell environment iPython. 
It provides an easy way to debug or test out parts of your script. It also has the 
extra benefit of tab completion and you can use most Unix command lines within 
the iPython environment. Instructions for downloading and installing iPython can 
be found here: http://ipython.org/install.html 
 
Example script Parsing a GenBank File in iPython: 
So let’s test this out by writing a small script that converts a GenBank formatted file 
to a fasta formatted file. First open up a terminal and run iPython by typing 
 
ipython  

 
Now write the script by first importing SeqIO from BioPython 
 
from Bio import SeqIO 

 

In one line you can now read in your GenBank file and parse through it line by line 
to extract information from it in a loop: 
 
for seqRecord in SeqIO.parse(“my_file.gb”, “genbank”): 

 print(seqRecord) 

 
The results of this command shows you all of the information in your GenBank file 
by assigning each record to the object seqRecord while parsing the file. Note that 
the name seqRecord is not important and you could have named this object 
anything you wanted – think of these variable as saying for each element in my 
file: do this where they are a random name for the element. You can pull specific 
fields from the GenBank file. For example, if you want to only pull the sequence ID 
(a.k.a. the accession number) you could replace print(seqRecord) in the above 
script with: 
 
print(seqRecord.id) 

 
If you wanted just the sequence: 
 
print(seqRecord.seq) 

 
In my experience the best way to start programming is to think of a task you do 
often and already have a solution for (e.g., pulling all of the sequence headers from 
a fasta file) and figure out how to do the same thing in Python. Just like any spoken 
language, learning computer languages requires practice and consistent use! 

 
R 
 
R is a statistical and graphic package. R is freely available, highly flexible, and 
users can take advantage of a large community of users. While R can initially be 
intimidating, once you learn the basic syntax and vocabulary there are very few 
things you cannot do with it. If you are looking to do something specific with your 
data, chances are someone has already written a package for it! R can be used for 
basic statistical tests or can be used to write complex functions  
 
Official R link: http://cran.r-project.org/ 
 
Best R books: 
Norman Matloff. The Art of R Programming. No Starch Press, 2011. 

http://ipython.org/install.html
http://cran.r-project.org/


 30 

Paul Teetor. R Cookbook. O'Reilly, 2011.  
Alain Zuur, Elena Ieno, & Erik Meesters. A Beginner's Guide to R. 2009 
 
Online R learning resources: 
Beginner: 
Code School Try R: https://www.codeschool.com/courses/try-r 
Software Carpentry R Lesson: http://swcarpentry.github.io/r-novice-inflammation/ 
RStudio resources: http://www.rstudio.com/resources/training/online-learning/ 
Intermediate/Advanced:  
Advanced R: http://adv-r.had.co.nz/ 
Statistics Using R with Biological Examples: http://cran.r-
project.org/doc/contrib/Seefeld_StatsRBio.pdf 
An Introduction to R for Dynamic Models in Biology: 
https://people.cam.cornell.edu/~dmb/DynamicModelsLabsInR.pdf 

 

Using R - The Basics: 
Remember, R is a statistics and graphics package, not a programming language 
(though the syntax resembles many programming languages). R uses an object-
oriented language meaning the basic unit in R are objects. 
 

• Object: Any input or output that you pass to R (e.g. numbers, letters, 
strings, etc) 

• Vector: Collection of objects that are all the same type (e.g. a collection of 
numbers) 

• Function: Set of instructions to be carried out on a single object or vector 
of objects 

• Parameter: Information passed to a function 
• Argument: Similar to a parameter, this is information for the function that 

tells it how to use or handle the information passed to it 
 
Basic command structure  
object assignment expression 

 
So for example (> is command prompt, you don't type it in): 
> mean.limb.size <- c(2,3,4,5) 
> mean.limb.size 
[1] 2 3 4 5 

 
In this example we used an assignment operator (<-) to assign a vector of objects 
(2,3,4,5 -- the "c" stands for concatenate) to an object (mean.limb.size). If we call 
our vector again R returns a line number [1] and our numerical objects. 
 
> mean.limb.size <- 2+3+4+5 
> mean.limb.size 
14 

 
In this example instead of assigning a vector of objects to mean.limb.size we used 
the addition operator to assign relationships between the objects. If we call 
mean.limb.size again, R evaluates the expression and returns 14. Now that we 
have our named object mean.limb.size we might want to do something to it. To this 
end we can use a function. One useful function that is pre-loaded into the R 

https://www.codeschool.com/courses/try-r
http://swcarpentry.github.io/r-novice-inflammation/
http://www.rstudio.com/resources/training/online-learning/
http://adv-r.had.co.nz/
http://cran.r-project.org/doc/contrib/Seefeld_StatsRBio.pdf
http://cran.r-project.org/doc/contrib/Seefeld_StatsRBio.pdf


 31 

environment is summary(). This function takes an object or vector and outputs 
basic summary statistics about it. So for example if we have the following object: 

 
> daily.attendance <- c(20, 25, 58, 108, 11, 1, 44, 46, 70) 

 
We can get a summary of our data by supplying our object as an argument in the 
function: 
 
> summary(daily.attendance) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   1.00   20.00   44.00   42.56   58.00  108.00  

 
You can see that this function finds the minimum and maximum value in your 

object as well as the median and mean values and values that represent the first 

and third quartiles. 

 
Rules for naming objects: 

• Must begin with a letter 
• Cannot contain the following characters: , - + # & % [ ] { } * 
• Be specific! The name of your object should tell you what your object 

contains! 
• Object names are case sensitive. Mean.limb.size =\= mean.limb.size 
• If you need to separate words in your name use "." or "_" 

 
The R workspace: 
You can run R in the command prompt or terminal or a GUI like R commander 
(http://www.rcommander.com), RStudio (http://www.rstudio.org), or Tinn-R 
(http://www.sciviews.org/Tinn-R/). Your 'workspace' refers to your current session 
and all of the objects/packages/etc that you are using in R. There are various 
commands that can help you keep track of your workspace. 

 
ls() lists all of the objects in your workspace 
rm() remove an object from your workspace by entering its name 

between the parentheses 
getwd() see which directory you are using with this workspace. This is 

important as all files you want to use/load/etc in R should be in 
your working directory! 

setwd() change your working directory (enter path to new directory in 
parentheses) 

library() tells you which packages are currently loaded into your 

workspace 

 
Functions and other utilities in R are stored in what are known as packages. Any 
that are not included in the base R installation need to be installed and loaded to 
use them in your workspace. 

 
install.packages(name, repository) 

  
install.packages() is a function that takes two parameters: name of the desired 
function and the repository that you want to use to download the package. For 
example, to install the package car from the University of Washington repository: 

 
install.packages(car, repos="http://cran.wustl.edu") 

 
To get a list of all available packages to download type the install.packages 
function with no arguments. Once you have a package installed you need to load it 
into your workspace (you will need to do this every time you start a new 
workspace!) 

 
library(car) 

 
You have two options to get help with a particular function in R. If you know the 
exact name of the function (here we are using the car package) and want to see its 
help page type: 

 
help(car) 

 
If you are unsure of the exact function name or want to get information about a 
general topic/statistical test/etc. (this example would return information about using 
t-test in R): 

 
?t-test  



 32 

 
You can also request a demo of a function of utility by typing (this will only work if 
the person who wrote the function or package included a demo): 

 
demo(function) 

 
To see how awesome R graphic functions can be try: 
 
demo(graphics)  

 

Other programming languages used in biology 
 

• Perl: https://www.perl.org/ 

• Java: https://www.java.com/en/ 

• C family of languages: https://isocpp.org/ 
 

Note: 
Often, you’ll hear references to high-level and low-level programming languages. A 
high-level programming languages are thought to be more similar to human 
languages in the sense that they are far removed from the actual language of the 
computer which at its lowest level is a binary system of just zeros and ones. 
Python, Java, Perl, and others are high-level languages while C and C++ are 
increasingly being described as “middle-level” languages. Languages like C and 
C++ are more abstract than high-level languages but are generally more memory 
efficient.  
 

Reference databases 
There are a plethora of biological databases, this is just a sampling of some of 
them and should not be considered a comprehensive list. 
 

• EzBiocloud: https://ezbiocloud.net 
o Bacterial and Archaeal 16S rRNA and Genome database 

• UNITE: https://unite.ut.ee/ 
o Fungal ITS database 

• SILVA: http://www.arb-silva.de/ 
o Both 18S rRNA and 16S rRNA 

• PR2: https://github.com/pr2database/pr2database 

o 18S rRNA focused mostly on protists 

• EMBL (European Bioinformatics Institute): https://www.ebi.ac.uk/ena 
o DNA & RNA, Gene Expression, Proteins, Structural, Systems, 

Chemical Biology, Ontology database 

• GenBank (National Center for Biotechnology Information): 
https://www.ncbi.nlm.nih.gov/genbank/ 

o Genetic sequence database, annotated collection of all publically 
available DNA sequences 

• Ensembl: https://useast.ensembl.org/index.html 
o Vertebrate genomes 

• RGD: https://rgd.mcw.edu/ 
o Rat genome database 

• HPA: https://www.proteinatlas.org/ 
o Human protein atlas 

• miRBase: http://www.mirbase.org/ 
o microRNA database 

• Rfam: https://rfam.xfam.org/ 
o RNA families 

• UniProtKB/Swiss-Prot: https://www.uniprot.org/ 
o Protein sequences 

• SNPedia: https://www.snpedia.com/index.php/SNPedia 
o Human genome SNP database 

• NCBI: https://www.ncbi.nlm.nih.gov/ 
o Many different biomedical and genomic information 

 
 

Silly things 
 
Some fun linux commands, most of these you’ll need to install yourself but they’re 
good for procrastination! 
 
sl Choo choo 
fourtune Get your fortune! 
cowsay Get a cow to tell you your future! 
telnet towel.blinkenlights.nl 

 

In a galaxy far far away….. 

ruby -e 'C=`stty 

size`.scan(/\d+/)[1].to_i;S=["2743
Snow day 

https://www.perl.org/
https://www.java.com/en/
https://isocpp.org/
https://ezbiocloud.net/
https://unite.ut.ee/
http://www.arb-silva.de/
https://github.com/pr2database/pr2database
https://www.ebi.ac.uk/ena
https://www.ncbi.nlm.nih.gov/genbank/
https://useast.ensembl.org/index.html
https://rgd.mcw.edu/
https://www.proteinatlas.org/
http://www.mirbase.org/
https://rfam.xfam.org/
https://www.uniprot.org/
https://www.snpedia.com/index.php/SNPedia
https://www.ncbi.nlm.nih.gov/


 33 

".to_i(16)].pack("U*");a={};puts 

"\033[2J";loop{a[rand(C)]=0;a.each

{|x,o|;a[x]+=1;print 

"\033[#{o};#{x}H 

\033[#{a[x]};#{x}H#{S} 

\033[0;0H"};$stdout.flush;sleep 

0.1}' 

 


